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What is... Chern-Simons theory?

Henry Park

This is an informal note on Chern-Simons theory (a.k.a. Jones-Witten theory) prepared for a talk at Caltech
Graduate Student Seminar. The emphasis is on general overview and intuition, and there will be no proof at all.
Interested readers may want to consult the listed references.

1 Introduction : What is a TQFT?

1.1 Axiomatic definition

Axiomatically [1], an (n + 1)-dim’l TQFT Z is simply a symmetric monoidal functor from (n + 1)Cob to Vect. 1

Z : (n + 1)Cob→ Vect

More precisely [2], for each compact oriented smooth n-manifold Σ, Z(Σ) = HΣ is a finite dimensional complex
vector space, and for each compact oriented (n + 1)-manifold Y with boundary Σ, Z(Y ) ∈ Z(Σ). They satisfy the
following axioms :

A1 (Involutory) Z(Σ∗) = Z(Σ)∗

A2 (Multiplicativity) Z(Σ1 t Σ2) = Z(Σ1) ⊗ Z(Σ2)

A3 (Associativity) IfY1 is a cobordism from Σ1 to Σ2 andY2 is a cobordism from Σ2 to Σ3, then for the composite
cobordism Y = Y1 ∪Σ2 Y2, Z(Y ) = Z(Y2)Z(Y1) ∈ Hom(Z(Σ1), Z(Σ3)).

as well as non-triviality axioms

A4 Z(∅) = C

A5 Z(Σ × I) is the identity endomorphism of Z(Σ).

Some obvious consequences of these axioms are :

• If you cut a closed (n + 1)-manifold into two pieces, say Y1 and Y2, along their common boundary Σ, then

Z(Y ) = 〈Z(Y1), Z(Y2)〉

Basically this property makes TQFTs highly computable.

• Each Z(Σ) carries a representation of MCG(Σ) = Diff+(Σ)/isotopy. 2

• If f ∈ MCG(Σ), then
Z(Σ f ) = TrZ( f )

In particular, Z(Σ × S1) = dim Z(Σ).
1There are all sorts of variants, e.g. one can replaceVect by any monoidal tensor category C, or decorate the TQFTwith more structures

on the manifolds. Also there are extended TQFTs which deal with higher categories [11].
2In actual physical TQFTs, we may only have projective representations.
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1.2 TQFT as a 2-step “functor”

Physically, Z(Σ) = HΣ are Hilbert spaces of states, and Z(Y ) are partition functions, determining (time-) evolution
of states. TQFTs are the simplest kinds of QFTs, because there is no dynamics; the Hamiltonian is identically 0.
There are lots of concrete examples of TQFT coming from physics, and they are roughly constructed through the
following 2-step process [9] :

geometric structure
physics
−−−−−→ classical phase space

quantization
−−−−−−−−→ quantum Hilbert space

1. Starting from a geometric structure, put a physical theory on that geometric structure, and solve the classical
EOM. 3 The moduli space of boundary conditions is the classical phase space, which is a symplectic
manifold.

2. Quantize the classical phase space (using geometric quantization [5]) to obtain the quantum Hilbert space.

As an example, suppose M is a 3-manifold with boundary Σ. Let G be a semisimple Lie group (e.g. SU(2))
and consider a physical theory on M where fields A are (gauge equivalent classes of) G-connections on M and the
Chern-Simons Lagrangian 4 is given by

CS(A) :=
k

8π2

∫
M

Tr
(
A ∧ dA +

2
3

A ∧ A ∧ A
)
∈ R/Z

The EOM is then FA = dA + A ∧ A = 0; i.e. classical fields are flat connections. Hence the classical phase space
is the moduli space of flat G-connections on the boundary Σ

MΣ

and this space (and AΣ) is equipped with a natural symplectic form

ω(α, β) = −
1

8π2

∫
Σ

Tr(α ∧ β)

There is a natural restriction map from the moduli space of flat connections on the whole space to the classical
phase space

MM →MΣ

After geometric quantization, we get a Hilbert space of holomorphic sections of L⊗k , where L is a complex line
bundle overMflat(Σ,G), and a vector (= holomorphic section) determined by M . [8]

1.3 Schwarz type and Witten type

Physicists divide TQFTs into roughly two types [10] : Schwarz type TQFTs and Witten type TQFTs [6].

• Schwarz type TQFTs are those whose topological invariance is manifest directly from the Lagrangian.
Examples include Chern-Simons theory [7], 2d Yang-Mills theory and BF theory

• Witten type TQFTs are those whose topological invariance is not manifest directly from the Lagrangian.
Often, Witten type TQFTs have some supersymmetry (or a BRST operator) Q thanks to which topological
invariance is maintained. The Hilbert space in a Witten type TQFT is just the Q-cohomology. Examples of
Witten type TQFTs include Seiberg-Witten theory and Floer homology.

In this talk, we focus on Chern-Simons theory, which is a Schwarz type theory.

3Often, a physical theory is specified by a description of “fields” and a choice of Lagrangian.
4This Chern-Simons functional may look arbitrary at first, but actually it arises naturally as the antiderivative of the 1-form F onA/G.

That is, dCS(A) = 1
4π2 FA.
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2 WRT invariants

2.1 Definition

TheWitten-Reshetikhin-Turaev invariant is an invariant of 3-manifolds, possibly with a (colored, oriented, framed)
link inside it. There are many different ways to define the WRT invariant : using path integral [7], using conformal
field theory and affine Lie algebras [3], or using quantum groups [4]. In this note, let’s look at the path integral
definition.

Let’s fix a compact semisimple Lie group G (gauge group) and a positive integer k (level). Then for each
closed 3-manifold M with a link L ⊂ M whose components L1, · · · , Lr are colored by representations R1, · · · , Rr

of G, the WRT invariant of (M, L) is a number

Z(M, L) :=
∫
A∈A/G

r∏
i=1

Tr(HolLi Ri) e2πikCS(A)DA ∈ C

normalized in a way that Z(S2 × S1) = 1. In particular, JL := Z(S3,L)
Z(S3)

is a link invariant.
This a Feynman path integral. The moduli space A/G of all fields is infinite dimensional, and no mathemat-

ically rigorous definition of path integral in general exists yet. But still we can get a lot of intuition from this
path integral expression. For instance, in case of abelian CS, the path integral is just a Gaussian integral, and one
can directly compute it. Also one can proceed perturbatively, and the perturbative CS is related to torsions of
3-manifolds and Vassiliev invariants of knots.

2.2 Heuristic meaning (Feynman diagrams)

Before we get to the actually meaning of this invariant, let’s see what it means heuristically. In any QFT specified
by a Lagrangian, you can get a lot of information by just directly reading off free part and interaction part. In
case of Chern-Simons theory, the free part is A ∧ dA, and the interaction part is 2

3 A ∧ A ∧ A. Hence in Feynman
diagrams, the free part will be corresponding to propagation of a gauge field, and the interaction part will be
corresponding to trivalent vertices. Moreover, the Wilson lines play the role of source.

The path integral can be heuristically understood as the amplitude obtained by summing and integrating over all
the possible Feynman diagrams.

2.3 How to compute it? (Jones polynomial and its generalization)

If the path integral is not rigorously defined, then how can we actually compute it? As we’ve seen in section 1, we
can use the cutting and gluing! So once we have a description of a 3-manifold as surgery or Heegaard splitting,
information of mapping class group representation is enough to compute the WRT invariant. In particular, when
we have a surgery presentation of a manifold, we only need to know what is the representation of SL(2,Z) given
by the Chern-Simons theory. Let Σ1 be a torus. A basis of HΣ1 is given by a single Wilson line lying at the core
of a solid torus, colored by certain representations of the quantum group Uq(g) [4] or the affine Lie algebra ĝ [3]
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capped by the level k; i.e. there are only finitely many colors, and the number of colors is exactly dimHΣ1 . Then
the problem reduces to finding values of JL =

Z(S3,L)
Z(S3)

for L = an unknot with framing 1 and for L = a Hopf link. 5
Then how do we compute those link invariants? We’ll use cutting and gluing again! Let’s take G = SU(2) and

R = spin 1
2 representation as the simplest example. 6 The Hilbert spaceHΣ0,4 of a sphere with 4 marked points is

2-dimensional. (This is roughly due to the fact that Hom(2 ⊗ 2 ⊗ 2 ⊗ 2,C) is 2-dimensional.) Hence the following
three states are linearly dependent

Indeed,
q1/4JL+ − q−1/4JL− = (q

1/2 − q−1/2)JL0

where q = e
2π i
k+2 . This JL ∈ Z[q1/4, q−1/4] is called the Jones polynomial.

Similarly one can define invariants of (colored, framed) spatial webs. For example, in case G = SU(2) and
R = spin 1 representation, Hom(3 ⊗ 3 ⊗ 3 ⊗ 3,C) is 3-dimensional, and hence we have the following 4-term skein
relations :

In the classical limit q → 1, this invariant just counts the number of Tait colorings; it becomes insensitive to the
choice of embedding.

3 Aspects of CS theory

3.1 Perturbative CS, torsion, Vassiliev invariants

By perturbing the path integral definition of WRT invariant, it was conjectured by Witten [7] that

Zk(M) ∼
1
2

e−3πi/4
∑
α

√
Tα(M)e−2πiIα/4e2πi(k+2)CS(A)

asymptotically, as k →∞ where α ranges over (connected components of) flat connections, Tα is the Ray-Singer
torsion (or Reidemeister torsion) of M , and Iα ∈ Z/8Z.

In case of links in S3, by perturbing, we can get Vassiliev invariants (= finite type invariants) of links. See [3].

5This is because J(H; λ, µ) = Sλµ
S00

and J(U1;λ)
J(U0;λ) = Tλλ.

6Representations of SU(2) are self-dual, so we don’t need to take care of orientation of links in this case.
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3.2 Complex CS theory, volume conjecture, AJ conjecture

Let K be a knot in S3, and let M = S3 \ K be the complement with torus boundary ∂M = Σ1. The classical phase
space for SL(2,C) CS theory is the moduli space of flat SL(2,C)-connections on Σ1, which is

MΣ1 ' (C
∗ × C∗)/(Z/2Z)

where Z/2Z acts by (x, y) 7→ ( 1x ,
1
y ). [9] It has a natural symplectic form

ω = d ln x ∧ d ln y

The moduli spaceMM of flat SL(2,C)-connections on M sits insideMΣ1 as a Lagrangian submanifold, and it
is an algebraic curve; it can be described by a polynomial equation A(x, y) = 0. Such polynomial is called the
A-polynomial for the knot K . The A-polynomial is a function on the phase space MΣ1 . After quantization, it
becomes an operator Â on the Hilbert spaceHΣ1 , and it should annihilates the vector Z(M) ∈ HΣ1 :

Â Z(M) = 0

The AJ conjecture (a.k.a. quantum volume conjecture) states that both SU(2) and SL(2,C) partition functions
must satisfy the quantum constraint equation. This in turn gives us a q-difference equation between colored Jones
polynomials, hence relating the A-polynomial and the colored Jones polynomials.

3.3 3d-3d correspondence, “WRT blocks”, categorification

Witten [12] gave a physical description of Khovanov homology, a categorification of the Jones polynomial.
Building upon that idea, there are some recent ideas and proposals from physics [13, 14] which could possibly
lead to categorification of WRT invariants. Apparently, “6d N = (2, 0) SCFT of A1 type” on M × D2 × R with
boundary condition a on ∂D2 plays the central role in this field. By compactifying M3, we get a 3dN = 2 theory
T[M] on D2 ×R, and such theory T[M] (as well as partition functions and indices of the theory) is an invariant of
the 3-manifold M . Such correspondence is called the 3d-3d correspondence.

One particular invariant of our interest is the supersymmetric partition function of T[M] on D2 ×q S1 :

Ẑa(q) = ZT [M](D2 ×q S1; a) ∈ 2−cq∆aZ[[q]]

These “WRT blocks” are conjectured to be building blocks for the WRT invariant. For instance, when M is a
plumbed 3-manifold (i.e. when M has a tree-shaped surgery link) the WRT invariant can be decomposed into the
following form, possibly up to some phase factor :

ZSU(2)k [M] = (i
√

2k)b1(M)−1
∑
a,b

e2πik `k(a,a)Sab Ẑb(q)|
q→e

2π i
k

where a, b ∈ Tor H1(M,Z)/(Z/2Z) and Sab is a sort of a Fourier transform. 7
Moreover, physics [13, 14] predicts that the Q-cohomology (= BPS spectrum) of the Hilbert space of T[M]

doubly graded :
HT [M](D2; a) =

⊕
i∈Z+∆a

j∈Z

H
i, j
a

where the q-grading i corresponds to the charge under U(1)q rotation of D2, and the homological grading j
corresponds to the R-charge of the R-symmetry U(1)R. This BPS spectrum categorifies Ẑa(q); i.e.

Ẑa(q) =
∑
i, j

(−1)jqi dimH i, j
a

7When M is not a plumbed 3-manifold, it is not clear yet what a and b should be indexed by.
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